

Journal of Geometry and Physics 46 (2003) 201

www.elsevier.com/locate/jgp

Erratum

Erratum to: "Integrable hierarchy for multidimensional Toda equations and topological–anti-topological fusion" [J. Geom. Phys. 46 (2003) 21–47][☆]

H. Aratyn^a, J.F. Gomes^{b,*}, A.H. Zimerman^b

^a Department of Physics, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607-7059, USA
^b Instituto de Física Teórica, UNESP, Rua Pamplona 145, 01405-900 São Paulo, Brazil

Through an unfortunate error by the publisher in the 7th, 8th and 14th line of the first paragraph following Eq. (3.36) the distinction between the symbols ϕ and φ was lost. The correct paragraph should read as follows:

Here we illustrate the above construction for m = 1 with the AKNS Lax operator $L = \partial_x - r\partial_x^{-1}q$ defining the spectral problem $L(\psi) = \lambda\psi$. The self-commuting isospectral flows (n > 0): $\partial_n r = B_n(r)$ and $\partial_n q = -B_n^{\dagger}(q)$ with $B_n = (L^n)_+$ belong to the positive part of the AKNS hierarchy. *L* can be described as a ratio of two ordinary monic differential operators as $L = L_2 L_1^{-1}$, where L_1 , L_2 denote monic operators $L_1 = (\partial_x + \varphi'_1 + \varphi'_2)$ and $L_2 = (\partial_x + \varphi'_1)(\partial_x + \varphi'_2)$ of, respectively, orders 1 and 2. A monic differential operator L_2 is fully characterized by elements of its kernel, $\phi_1 = \exp(-\varphi_2)$ and $\phi_2 = \exp(-\varphi_2) \int^x \exp(\varphi_2 - \varphi_1)$. Its inverse L_2^{-1} , is given by $L_2^{-1} = \sum_{\alpha=1}^2 \phi_\alpha \partial_x^{-1} \psi_\alpha$, where $\psi_1 = -\exp(\varphi_1) \int^x \exp(\varphi_2 - \varphi_1)$ and $\psi_2 = \exp(\varphi_1)$ are kernel elements of the conjugated operator $L_2^{\dagger} = (-\partial_x + \varphi'_2)(-\partial_x + \varphi'_1)$, see [26] and references therein. In this notation, $L = \partial_x + L_2(\exp(-\varphi_1 - \varphi_2))\partial_x^{-1} \exp(\varphi_1 + \varphi_2)$ and accordingly

$$q = -\exp(\varphi_1 + \varphi_2), \qquad r = -(\varphi_1'' - \varphi_1' \varphi_2') \exp(-\varphi_1 - \varphi_2).$$
(3.37)

Similarly, the inverse of *L* is also given as a ratio of differential operators $L^{-1} = L_1 L_2^{-1} = \sum_{\alpha=1}^{2} L_1(\phi_{\alpha}) \partial_x^{-1} \psi_{\alpha}$. The functions $\Phi_{\alpha}^{(-1)} \equiv L_1(\phi_{\alpha})$ and $\Psi_{\alpha}^{(-1)} \equiv \psi_{\alpha}$ satisfy the same flow equations as *r* and *q* with respect to the positive flows of the AKNS hierarchy.

[☆] PII of original article \$0393-0440(02)00126-2.

^{*} Corresponding author. Fax: +55-11-3177-9080.

E-mail address: jfg@ift.unesp.br (J.F. Gomes).